CAD и CAM системы
Продолжаем знакомиться с технологиями обработки на фрезерных станках с ЧПУ посредством выдержек из книги Ловыгина А.А., Васильева А.В. и Кривцова С.Ю. - переходим к описанию CAD CAM систем и принципов моделирования и работы.
Сегодня для достижения успеха на рынке промышленное предприятие вынуждено работать над сокращением срока выпуска продукции, снижением ее себестоимости и повышением качества. Стремительное развитие компьютерных и информационных технологий привело к появлению CAD/CAM/CAE систем, которые являются наиболее продуктивными инструментами для решения этих задач.
Что такое CAD и САМ?
Под CAD системами (computer-aided design - компьютерная поддержка проектирования) понимают программное обеспечение, которое автоматизирует труд инженера-конструктора и позволяет решать задачи проектирования изделий и оформления технической документации при помощи персонального компьютера.
САМ системы (computer-aided manufacturing - компьютерная поддержка изготовления) автоматизируют расчеты траекторий перемещения инструмента для обработки на станках с ЧПУ, и обеспечивают выдачу управляющих программ с помощью компьютера.
САЕ системы (computer-aided engineering - компьютерная поддержка инженерных расчетов) предназначены для решения различных инженерных задач, например, для расчетов конструктивной прочности, анализа тепловых процессов, расчетов гидравлических систем и механизмов.
Развитие CAD/CAM/CAE систем продолжается уже несколько десятилетий. За это время произошло некоторое разделение или точнее “ранжирование” систем на уровни. Появились системы верхнего, среднего и нижнего уровней. Системы верхнего уровня обладают огромным набором функций и возможностей, но с ними тяжелее работать. Системы нижнего уровня имеют довольно ограниченные функции, но очень просты в изучении. Системы среднего уровня - это “золотая середина”. Они обеспечивают пользователя достаточными для решения большинства задач инструментами, при этом не сложны для изучения и работы.
Уровни САМ системы
САМ система предназначена для автоматического создания управляющих программ на основе геометрической информации, подготовленной в CAD системе. Главные преимущества, которые получает технолог при взаимодействии с системой, заключаются в наглядности работы, удобстве выбора геометрии, высокой скорости расчетов, возможности проверки и редактирования созданных траекторий.
Различные САМ системы могут отличаться друг от друга областью применения и возможностями. К примеру, существуют системы для токарной, фрезерной, электроэрозионной обработки, деревообработки и гравировки. Не смотря на то, что большинство современных CAD/CAM систем умеют создавать УП для любого типа производства, такое разделение по областям применения остается актуальным. Если предприятию нужна фрезерная обработка, то оно приобретает модуль фрезерования. Если же нужна только токарная обработка, то достаточно приобрести токарный модуль этой же системы. Модульность построения САМ систем является частью маркетинговой политики разработчиков и позволяет предприятию-пользователю экономить значительные средства для приобретения только необходимых конструкторско-технологических возможностей.
В свою очередь, модули системы отличаются определенным уровнем возможностей. Обычно для фрезерной обработки разработчики вводят следующие уровни:
• 2.5-й осевая обработка
На этом уровне система позволяет рассчитывать траектории для простого 2-х координатного фрезерования и обработки отверстий.
• 3-х осевая обработка с позиционированием 4-ой оси
На этом уровне вы сможете работать с 3D моделями. Система способна генерировать УП для объемной обработки.
• Многоосевая обработка
В этом случае система предназначена для работы с самым современным оборудованием и способна создавать УП для 5-ти осевого фрезерования самых сложных деталей.
Чем выше уровень модуля, тем большими возможностями он обладает. Естественно, что для разработки алгоритмов 5-ти координатной обработки требуются большие инвестиции (как финансовые, так и интеллектуальные), чем для разработки алгоритмов 3-х координатной обработки. Следовательно, и стоимость модулей будет разной. Если у вашего предприятия нет оборудования для 5-ти координатной обработки, то нет смысла приобретать самый дорогостоящий модуль.
Геометрия и траектория
Прежде чем начать работу с CAD/CAM системой вы должны понять, что геометрия детали изготовленной на станке с ЧПУ может отличаться от истинной геометрии CAD модели. Несомненно, что 3D модель служит базой для расчета траекторий, но готовая деталь является результатом работы САМ системы и станка с ЧПУ, которые по-своему интерпретируют исходную геометрическую информацию.
Возьмем эллипс, который может быть создан в любой CAD системе очень просто - достаточно одного клика мышкой. Однако станок с ЧПУ не способен напрямую описать эллипс, ведь он умеет перемещать инструмент только по прямой или дуге. САМ система знает это и решает возникшую проблему при помощи аппроксимации эллипса прямыми линиями с определенной точностью. В результате, траекторию эллипса можно получить и на станке с ЧПУ, но уже при помощи линейной интерполяции.
Программист сам устанавливает ограничивающую зону для аппроксимации, то есть определяет с какой точностью нужно “приблизиться” к исход¬ной геометрии. Чем выше задана точность, тем больше будет произведено отдельных сегментов, и тем больший размер будет иметь программа обработки. Особенно ярко этот эффект проявляется при обработке 3D моделей.
Рис. 12.10. Линейная аппроксимация эллипса в САМ системе выполняется с заданной точностью.
Общая схема работы с CAD/CAM системой
Этап 1. В CAD системе создается электронный чертеж или 3D модель детали. На рисунке 12.1 изображена трехмерная модель детали с карманом сложной формы.
Этап 2. Электронный чертеж или 3D модель детали импортируется в САМ систему. Технолог-программист определяет поверхности и геометрические элементы, которые необходимо обработать, выбирает стратегию обработки, режущий инструмент и назначает режимы резания. Система производит расчеты траекторий перемещения инструмента.
Рис. 12.2. САМ система рассчитала траекторию для обработки кармана.
Этап 3. В САМ системе производится верификация (визуальная проверка) созданных траекторий. Если на этом этапе обнаруживаются какие либо ошибки, то программист может легко их исправить, вернувшись к предыдущему этапу.
Рис. 12.3. Результат верификации.
Этап 4. Финальным продуктом САМ системы является код управляю¬щей программы. Этот код формируется при помощи постпроцессора который форматирует УП под требования конкретного станка и системы ЧПУ.
Виды моделирования
Существует несколько вариантов геометрического представления детали в CAD системе. Выбор того или иного варианта зависит от возможностей системы и от необходимости его применения для создания управляющей программы.
Еще не так давно основными инструментами инженера-конструктора были карандаши, линейка и ватман. С появлением первых персональных компьютеров началась настоящая революция в области автоматизации проектирования. Инженеры-конструкторы сразу же оценили преимущества “плоских чертилок”. Даже самая простая CAD система для двумерного проектирования позволяет быстро создавать различные геометрические элементы, копировать фрагменты, автоматически наносить штриховку и проставлять размеры.
Основными инструментами при плоском проектировании являются линии, дуги и кривые. При помощи операций продления, обрезки и соединения геометрических элементов происходит создание “электронного чертежа”. Для полноценной работы с плоской графикой в САМ системе необходима дополнительная информация о глубине геометрии.
Каркасная модель представляет геометрию детали в трехмерном пространстве, описывая положение ее контуров и граней. Каркасная модель в отличие от плоского электронного чертежа предоставляет САМ системе частичную информацию о глубине геометрии.
С развитием автомобильной и авиационной промышленности и необходимостью аналитического описания деталей сложной формы на ПК, сформировались основные предпосылки для перехода от плоского к объемному моделированию Объемная или 3D модель предназначена для однозначного определения геометрии всей детали.
Рис. 12.5. 2D геометрия.
Рис. 12.6. Каркасная модель.
Рис. 12.7. Поверхностная модель.
Системы объемного моделирования базируются на методах построения поверхностей и твердотельных моделей на основе плоских и неплоских эскизов. Эскиз, в свою очередь, состоит из простых геометрических элементов - линий, дуг и кривых. Инженер-конструктор принимает в качестве эскизов сечения, виды и осевые линии деталей.
Поверхностная модель очень похожа на каркасную. Представьте себе, что между гранями каркасной модели натянута тонкая ткань. Это и будет поверхностной моделью. Таким образом, любое изделие может быть представлено в виде набора ограничивающих поверхностей.
В настоящее время поверхностные модели широко используются для работы с САМ системами, особенно когда речь идет об инструментальном производстве.
При твердотельном способе моделирования основными инструментами являются тела, созданные на основе эскизов. Для построения твердого тела используются такие операции как выдавливание, вырезание и вращение эскиза. Булевы операции позволяют складывать, вычитать и объединять раз¬личные твердые тела для создания 3D модели изделия. В отличие от поверхностных моделей, твердотельная модель не является пустой внутри. Она обладает некоторой математической плотностью и массой. На сегодняшний день твердотельные модели - это самое популярная основа для расчета траекторий в САМ системе.
Одним из главных преимуществ этого способа является так называемая параметризация. Параметризация означает, что в любой момент вы можете изменить размеры и характеристики твердого тела, просто изменив числовые значения соответствующих параметров.
Современная CAD/CAM система должна обладать инструментами для создания как поверхностных, так и твердотельных моделей.
Рис. 12.8 Выдавливание (Extrude) плоского эскиза для создания твердотельной модели.